Subaru WRX Forum banner

GrimmSpeed Top Mount Intercooler and Splitter - 08-14 WRX, 05-09 LGT- PRODUCT RELEASE

2K views 3 replies 1 participant last post by  GrimmSpeed 
#1 ·
By now, you've surely heard the news, but the new GrimmSpeed Intercooler is now available worldwide with GrimmSpeed dealers everywhere. Following an incredibly successful presale and excellent reviews, we're officially releasing the 08-14 WRX and 05-09 Legacy GT Top Mount Intercoolers in both uncoated and thermal dispersant coated finishes. For those that have some catching up to do, this Jalopnik article does a great job of summarizing what you've missed since December.



The good news for you, is that nearly 200 people have successfully installed their new GrimmSpeed Intercoolers and have had great things to say! Add those to the thousands of happy 02-07 WRX and 02-15 STI owners and you just can't go wrong. Without further ado, we're excited to announce the official release of the 2008-2014 WRX and 2005-2009 Legacy GT Top Mount Intercooler!

Meticulous Engineering Meets Unparalleled Craftsmanship.


https://www.grimmspeed.com/top-mount-intercooler-kit-subaru-08-14-wrx-05-09-legacy-gt/



Quick Specs:

- 17.5in x 8.7in x 3.5in Cross Flow Core - careful balance of high heat transfer and low pressure drop
- Cast Aluminum End Tanks - machined BPV flange for precision fit and perfect seal
- 5-Ply Silicone Couplers - custom molded and reinforced for demanding environments
- Wide-Mouth Splitter - collects air from the entire width of the scoop
- Vibration Isolation Mounting - protect the intercooler system from fatigue due to vibration
- Stainless Steel BPV Studs - avoid the risk of damaging fragile aluminum threads
- Bypass Valve Fitment - designed to leave plenty of space for large and adjustable aftermarket BPV/BOV options
- Cleaned, Inspected and Sealed Prior to Shipping - prevent motor damage due to foreign matter

Design:

There are two primary considerations in the design of an intercooler: maximum heat transfer and minimum pressure drop. Unfortunately, one causes the other, so finding a perfect balance requires a detailed understanding of the intended application, some serious engineering power and the highest quality manufacturing processes. Fitment and quality are also critically important to ensure that the most safety-critical part of your turbo system is up to the task every time your foot hits the floor. We began by laser scanning an OEM TMIC to plot the mounting points and space claim in CAD with pinpoint accuracy. At the same time, we designed a custom bar and plate core with overall dimensions, fin density and fin types that would provide the insane heat transfer area we require with minimal flow restriction. With core size nailed down, we got to work designing end tanks that offered smooth flow, perfect fitment and even distribution of the hot charge air through the core. Countless revisions were tested in flow simulation before we finally found exactly the characteristics that we wanted. From there, 3D printed prototypes were used to confirm fitment and we began work on manufacturing details in preparation for verification testing and production.

Construction:

Each intercooler uses two unique end tanks. The first accepts the hot charge air from the turbo and feeds it to the intercooler core. The second receives the cooled charge air from the core and delivers it to the throttle body. These end tanks are precision cast and machined right here in Minnesota. The bypass valve flange is milled flat and stainless steel studs are permanently installed to ensure that the aluminum threads don’t become damaged and shorten the life of the intercooler. Following inspection, end tanks are welded to high density bar and plate intercoolers before the entire assembly is pressure tested, cleaned and sealed for shipment. 5-ply silicone couplers hold their shape in extreme conditions and ensure that charge air makes it to and from the intercooler with no trouble. Splitters are laser cut from aluminum sheet and CNC bent before being assembled and powdercoated with a durable texture black finish. Stainless steel hardware secures the splitter to the factory hood scoop.

Performance:

We setup this test to simulate a real world scenario that’s typically demanding of an intercooler. The test vehicle is a 2012 WRX with a GrimmSpeed downpipe, boost control solenoid, prototype intake and tuning. On a closed course, we accelerated in 3rd gear from 3000rpm to redline repeatedly, with 5-8sec between runs. Temperature was logged via k-type thermocouples between the turbo and the intercooler and between the intercooler and the throttle body on both units. Ambient temperature here in Minnesota for both tests was between 20 and 22 degrees F.



The results above speak for themselves, but here’s a breakdown. The phase differences between the runs are a result of how quickly we could safely get the car back down to speed for another run, but the important thing to notice is the magnitude of the temperature fluctuations. Predictably, both intercoolers were seeing similar Pre-IC temperatures on each run (180-190F peak), but while the GrimmSpeed Uncoated TMIC kept Post-IC temperatures between 30-40F the entire time, the OEM TMIC fluctuated between 35-75F. This is the kind of consistent cooling that you should expect from a high quality TMIC and is a function of the geometry and design of the bar and plate core. Our high density core has a massive heat transfer surface area but maintains a large enough cross-sectional flow area that there’s very little added restriction.



Above are charts representing average pressure drop and temperature drop for each of the three intercoolers that we tested. It's interesting to see that each intercooler has it's stronger and weaker points, which is to be expected. Like we talked about before, intercooler design is all about finding the right balance of heat transfer and pressure drop. As you can see here, we've opted for a large heat transfer with a small increase in pressure drop. The stock TMIC creates a smaller pressure drop, but sacrifices greatly in heat transfer. The 'other' TMIC that we tested offered heat transfer between OEM and GS, but had the highest pressure drop of the three.

Lastly, we tested the effectiveness of our black thermal dispersant coating in a controlled lab environment.



Includes everything for a complete kit:

- 1x Intercooler
- 1x Aluminum Turbo Adapter
- 1x Viton O-Ring for Turbo Adapter
- 1x Turbo>TMIC Silicone Hose
- 1x TMIC>Throttle Body Silicone Hose
- 1x Bypass Valve Silicone Hose Extension
- 1x Breeze Liner Clamp Kit (6pcs)
- 2x Mounting Brackets
- 2x Rubber Vibration Isolators
- 1x Full Hardware Kit
- 2x BPV Mounting Studs (installed)
- 1x Splitter
- 1x Splitter Gasket Kit
- 1x 'GS' Logo Stencil
- 1x GrimmSpeed Sticker

Fitment Options:

- 2008-2014 Subaru WRX (uncoated and coated)
- 2005-2009 Subaru Legacy GT (uncoated and coated)

A note regarding aftermarket turbos:

We will have a silicone hose available for purchase separately on our website that facilitates the use of aftermarket 'sti style' turbos with a standard compressor outlet.

Pricing:

Uncoated MSRP: $999.99
Coated MSRP: $1134.99


As always, please don't hesitate to contact us directly with questions or to place your order!

Pictures:

2008-2014 Subaru WRX Kit

2008-2014 Subaru WRX Kit - Black Thermal Dispersant

2005-2009 Subaru Legacy GT Kit

2005-2009 Subaru Legacy GT Kit - Black Thermal Dispersant
 
See less See more
9
This is an older thread, you may not receive a response, and could be reviving an old thread. Please consider creating a new thread.
Top